Xi, Q., Chiovaro, M., Windsor, L. C., & Paxton, A. (in preparation). Online emotion diffusion and its coupling with real-world collective action in Syria during the Arab Spring [Registered report].
Vitae
Education
Ph.D., Cognitive and Information Sciences
University of California, Merced
August 2011 - December 2015
Employment
Assistant Professor
Department of Psychological Sciences
University of Connecticut
August 2018 — present
Moore-Sloan Data Science Fellow
Berkeley Institute for Data Science
University of California, Berkeley
August 2016 — July 2018
Postdoctoral Scholar
Institute of Cognitive and Brain Sciences
University of California, Berkeley
January 2016 — July 2018
Peer-Reviewed Journal Publications
Mentees’ names underlined. Asterisk indicates dual first-author position. Open access articles or preprints
Paxton, A., Richardson, D. C., & Dale, R. (in preparation). Seeing the other side: Conflict and controversy increase gaze coordination.
Mankovich, A., Wittke, K., Blume, J., Mastergeorge, A. M., Paxton, A., & Naigles, L. R. (in preparation). Say that again: Quantifying patterns of grammatical production for children with ASD using recurrence analysis.
Hall, C., Kim, J. C., & Paxton, A. (under revision). Multidimensional recurrence quantification analysis of human-metronome phasing.
Chiovaro, M., & Paxton, A. (under revision). Natural, nonlinear, and noisy: A quantitative approach to the collection and analysis of real-world social behavior.
Jiang, S., Paxton, A., Ramírez-Esparza, N., & García-Sierra, A. (submitted). Toward a dynamic approach of person perception at zero acquaintance: Applying recurrence quantification analysis to thin slices.
Paxton, A., Varoquaux, N., Holdgraf, C., & Geiger, R. S. (accepted). Community, time, and (con)text: Online communication patterns in open-source software communities and their implications for community health. Cognitive Science.
Schwab, S. M., Carver, N. S., Forman, M., Abney, D. H., Davis, T. J., Riley, M. A., Paxton, A., & Silva, P. L. (2022). Child-caregiver interactions during a collaborative motor task in children with cerebral palsy: A descriptive exploratory study. Journal of Developmental and Physical Disabilities, 34, 255-277. doi: 10.1007/s10882-021-09798-6
Romero, V., & Paxton, A. (2021). Visual information and communication context as modulators of interpersonal coordination in face-to-face and videoconference-based interactions [Registered report]. Acta Psychologica, 221, 103453. doi: 10.1016/j.actpsy.2021.103453
Pouw, W., de Jonge-Hoekstra, L., Harrison, S. J., Paxton, A., & Dixon, J. (2021). Gesture-speech physics in fluid speech and rhythmic hand movement. Annals of the New York Academy of Sciences, 1491(1), 89-105. doi: 10.1111/nyas.14532
Paxton, A.*, Roche, J. M.*, Ibarra, A., & Tanenhaus, M. K. (2021). Predictions of miscommunication in verbal communication during collaborative joint action. Journal of Speech, Language, and Hearing Research, 64(2), 613-627.
De Bari, B., Paxton, A., Dixon, J. A., Kondepudi, D., & Kay, B. A. (2021). Functional interdependence in coupled dissipative structures: Physical foundations of biological intra- and inter-organism. Entropy, 23(5), 614. doi: 10.3390/e23050614
Chiovaro, M., Windsor, L. C.*, Windsor, A., & Paxton, A.* (2021). Online social cohesion reflects real-world group action in Syria during the Arab Spring. PLOS ONE, 16(7), e0254087. doi: 10.1371/journal.pone.0254087
Abney, D., Paxton, A., Dale, R., & Kello, C. (2021). Cooperation in sound and motion: Complexity matching in collaborative interaction. Journal of Experimental Psychology: General, 150(9), 1760-1771. doi: 10.1037/xge0001018
Pouw, W., Paxton, A., Harrison, S. J., & Dixon, J. (2020). Reply to Ravignani and Kotz: Physical impulses from upper-limb movements impact the respiratory-vocal system. Proceedings of the National Academy of Sciences, 117(38), 23225-23226. doi: 10.1073/pnas.2015452117
Chiovaro, M., & Paxton, A. (2020). Ecological psychology meets ecology: Apis mellifera as a model for perception-action, social dynamics, and human factors. Ecological Psychology, 32(4), 192-213. doi: 10.1080/10407413.2020.1836966
Pouw, W., Paxton, A., Harrison, S. J., & Dixon, J. (2020). Acoustic information about upper limb movement in voicing. Proceedings of the National Academy of Sciences, 117(21), 11364-11367. doi: 10.1073/pnas.2004163117.
Chiovaro, M., & Paxton, A. (2020). Action coordination in non-human self-organizing collectives: Multidisciplinary lessons from living and nonliving systems. Ecological Psychology, 32(4), 139-142. doi: 10.1080/10407413.2020.1842136
Müller-Frommeyer, L. C., Kauffeld, S., & Paxton, A. (2020). Beyond consistency: Contextual dependency of language style in monologue and conversation. Cognitive Science, 44(4), e12834. doi: 10.1111/cogs.12834
DeMasi, O.*, Paxton, A.*, & Koy, K. (2020). Ad hoc efforts for advancing data science education. PLOS Computational Biology, 16(5), e1007695. doi: 10.1371/journal.pcbi.1007695
Blau, J. J. C., & Paxton, A. (2020). Scale-independent aggression: A fractal analysis of four levels of human aggression. Complexity, 2020, 2047157.
Paxton, A., & Tullett, A. (2019). Open science in data-intensive psychology and cognitive science. Policy Insights from the Behavioral and Brain Sciences, 6(1), 47-55. doi: 10.1177/2372732218790283.
Duran, N., Paxton, A., & Fusaroli, R. (2019). ALIGN: Analyzing Linguistic Interactions with Generalizable techNiques. Psychological Methods, 24(4), 419-438. doi: 10.1037/met0000206
Smith, G. K., Mills, C., Paxton, A., & Christoff, K. (2018). Mind wandering rates fluctuate across the day: Evidence from an experience sampling study. Cognitive Research: Principles & Implications, 3, 54. doi: 10.1186/s41235-018-0141-4
Paxton, A., & Griffiths, T. L. (2017). Finding the traces of behavior and cognition in big data and naturally occurring datasets. Behavior Research Methods, 49(5), 1630–1638.
Paxton, A., & Dale, R. (2017). Interpersonal movement synchrony responds to high- and low-level conversational constraints. Frontiers in Psychology, 8, 1135.
Main, A., Paxton, A., & Dale, R. (2016). An exploratory analysis of dynamic emotion regulation between mothers and adolescents during conflict discussions. Emotion, 16(6), 913-928.
Paxton, A., Rodriguez, K., & Dale, R. (2015). PsyGlass: Capitalizing on Google Glass for naturalistic data collection. Behavior Research Methods, 47(3), 608-619.
Fusaroli, R., Perlman, M., Mislove, A., Paxton, A., Matlock, T., & Dale, R. (2015). Timescales of massive human entrainment. PLOS ONE, 10(4), e0122742.
Abney, D., Paxton, A., Dale, R., & Kello, C. (2015). Movement dynamics reflect a functional role for weak coupling and role structure in dyadic problem solving. Cognitive Processing, 16(4), 325-332.
Abney, D., Paxton, A., Dale, R., & Kello, C.T. (2014). Complexity matching in dyadic interaction. Journal of Experimental Psychology: General, 143(6), 2304-2315.
Tollefsen, D., Dale, R., & Paxton, A. (2013). Alignment, transactive memory, and collective cognitive systems. Review of Philosophy and Psychology, 4(1), 49-64.
Paxton, A., & Dale, R. (2013). Argument disrupts interpersonal synchrony. Quarterly Journal of Experimental Psychology, 66(11), 2092-2102.
Paxton, A., & Dale, R. (2013). Frame-differencing methods for measuring bodily synchrony in conversation. Behavior Research Methods, 45(2), 329-343.
Refereed Conference Proceedings
Mentees’ names underlined. Asterisk indicates dual first-author position. Open access articles or preprints
Sharmin, S., Ivan, J. N., Kerry, M. L., Paxton, A., & Tucker, A. (forthcoming, 2022). Driver psychology latent classes as predictors of traffic incident occurrence in Naturalistic Driving Study (NDS) data. To appear in Proceedings of the Transportation Research Board 2022 Annual Meeting. Washington, D.C.: National Academies of Sciences, Engineering, and Medicine.
Chiovaro, M., Windsor, L. C., & Paxton, A. (2019). Vector autoregression, cross-correlation, and cross-recurrence quantification analysis: A case study in social cohesion and collective action. In Proceedings of the 43rd Annual Meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society.
Pouw, W., de Jonge-Hoekstra, L., Harrison, S. J., Paxton, A., & Dixon, J. (2020). Gesture-speech physics in fluent speech and rhythmic upper limb movements. In A. Grimminger (Ed.), Proceedings of the 7th Gesture and Speech in Interaction. Paderborn: Universitaetsbibliothek Paderborn.
Pouw, W., Paxton, A., Harrison, S. J., & Dixon, J. (2019). Acoustic specification of upper limb movement in voicing. In A. Grimminger (Ed.), Proceedings of the 6th Gesture and Speech in Interaction. Paderborn: Universitaetsbibliothek Paderborn.
Paxton, A., Blau, J. J. C., & Weston, M. (2019). The case for intersectionality in ecological psychology. In L. van Dijk and R. Withagen (Eds.), Studies in Perception and Action XX: Proceedings from the Twentieth International Conference on Perception and Action. Enschede: Ipskamp Printing.
Chiovaro, M., & Paxton, A. (2019). Nest-ed affordances. In L. van Dijk and R. Withagen (Eds.), Studies in Perception and Action XX: Proceedings from the Twentieth International Conference on Perception and Action. Enschede: Ipskamp Printing.
Blau, J. J. C., & Paxton, A. (2019). Scale-independent aggression. In L. van Dijk and R. Withagen (Eds.), Studies in Perception and Action XX: Proceedings from the Twentieth International Conference on Perception and Action. Enschede: Ipskamp Printing.
Paxton, A., Morgan, T. J. H., Suchow, J. W., & Griffiths, T.L. (2018). Interpersonal coordination of perception and memory in real-time online social experiments. In Proceedings of the 40th Annual Meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society.
Paxton, A.*, Roche, J.*, & Tanenhaus, M. (2015). Communicative efficiency and miscommunication: The costs and benefits of variable language production. In D. C. Noelle, R. Dale, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (Eds.), Proceedings of the 37th Annual Meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society.
Paxton, A., Roche, J. M., Ibarra, A., & Tananhaus, M. K. (2014). Failure to (mis)communicate: Linguistic convergence, lexical choice, and communicative success in dyadic problem solving. In P. M. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.), Proceedings of the 36th Annual Meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society.
Paxton, A., & Dale, R. (2014). Leveraging linguistic content and debater traits to predict debate outcomes. In P. M. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.), Proceedings of the 36th Annual Meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society.
Paxton, A., Abney, D., Kello, C. K., & Dale, R. (2014). Network analysis of multimodal, multiscale coordination in dyadic problem solving. In P. M. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.), Proceedings of the 36th Annual Meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society.
Roche, J. M., Paxton, A., Ibarra, A., & Tanenhaus, M. K. (2013). From minor mishap to major catastrophe: Lexical choice in miscommunication. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society.
Paxton, A., & Dale, R. (2013). Multimodal networks for interpersonal interaction and conversational contexts. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society.
Abney, D., Paxton, A., Kello, C.T., & Dale, R. (2013). Complexity matching in dyadic interaction. In P. Passos, J. Barrieros, R. Cordovil, D. Araújo, & F. Melo (Eds.), Studies in Perception and Action XII. Proceedings from the Seventeenth International Conference on Perception and Action.
Book Chapters, Technical Reports, and Other Publications
Mentees’ names underlined. Asterisk indicates dual first-author position. Open access articles or preprints
Paxton, A. (2020). The Belmont Report in the age of big data: Ethics at the intersection of psychological science and data science. In S. E. Woo, L. Tay, & R. Proctor (Eds.), Big data methods for psychological research: New horizons and challenges (pp. 347-372). American Psychological Association. doi: 10.1037/0000193-016
Paxton, A. (2019). #PSBigData: Helping big data research become more ethical and more open. Psychonomic Society Featured Content.
Richardson, M. J., Paxton, A., & Kuznetsov, N. (2017). Nonlinear methods for understanding complex dynamical phenomena in psychological science. Psychological Science Agenda.